Categorías
Convocatoria Extraordinaria Ejercicio Geometría Matemáticas II Opción A

Matemáticas II 2021 Julio A 3

3 Dadas las siguientes ecuaciones en el espacio tridimensional:

?: 5 − ? = ? − 3 = 5 − ?
π: 3x − 4y − 8z + 35 = 0

a) Comprobar que la recta ? y el plano π se cortan en un punto. Averiguar dicho punto.
b) Calcular la ecuación del plano que pasa por el punto ? (2, 2, 2), paralelo a la recta ?, y perpendicular al plano π.

Categorías
Convocatoria Extraordinaria Ejercicio Geometría Matemáticas II Opción B

Matemáticas II 2021 Julio B 3

3 Dado el plano ?:−? + 3? + 2? + 5 = 0
y las rectas secantes:
\inline r: \frac{x - 5}{2} = y + 2 = 1 - z    \inline s: \frac{x + 1}{6} = \frac{y}{-2} = z

a) Sea A el punto de intersección de las rectas ? y ?. Hallar la ecuación de la recta que es perpendicular al plano ? y que pasa por A.
b) Calcular el ángulo que forman las rectas ? y ?.

Categorías
Convocatoria Ordinaria Ejercicio Geometría Matemáticas II

Matemáticas II 2021 Junio A 3

3 Dados los siguientes puntos en el espacio tridimensional:
?(0,−2,3), ? (1,−1,4), ? (2,3,3) y ?(4,5,5).
a) Comprobar que los cuatro puntos son coplanarios.
A continuación, calcular la ecuación del plano que los contiene.
b) Calcular la ecuación de la recta ?, perpendicular al plano ?:

\fn_jvn \pi \equiv \left\{\begin{matrix} x = 1 + \lambda + \mu \\ y = -2 - \lambda + 2\mu\\ z = 3 + 3\lambda - \mu \end{matrix}\right.
que pasa por el punto ?.

Categorías
Convocatoria Ordinaria Ejercicio Geometría Matemáticas II

Matemáticas II 2021 Junio B 3

3Dadas las ecuaciones de los planos:

\fn_jvn \pi _{1}\equiv 2x + 3y - z = 9  y  \fn_jvn \pi _{2}\equiv \left\{\begin{matrix} x = 1 + \lambda + \mu \\ y = -2 - \lambda + 2\mu \\ z = 3 + 3\lambda - \mu \end{matrix}\right.

a) Hallar la ecuación de la recta paralela a los planos ?1 y ?2 que pasa por el punto medio del segmento cuyos extremos son ?(1,−1,0) y ?(−1,−3,2)
b) Calcular el ángulo formado por los planos ?1 y ?2.

Categorías
Convocatoria Ordinaria Ejercicio Geometría Matemáticas II

Matemáticas II 2020 Julio A 3

3 Dadas las rectas siguientes: \fn_jvn r\equiv \left\{\begin{matrix} x + y - z = 4\\ x + 2y = 7 \end{matrix}\right.  ,  \fn_jvn s\equiv \left\{\begin{matrix} x = 2\\ y + 5 = 0 \end{matrix}\right.
a) Estudie la posición relativa de r y s.
b) Halle la ecuación del plano perpendicular a la recta r, y que contiene el punto
A(11, –2, 5).

Categorías
Convocatoria Ordinaria Ejercicio Geometría Matemáticas II

Matemáticas II 2020 Julio B 3

3 Consideremos la recta \fn_jvn r:\left\{\begin{matrix} 2x - y = 5\\ 3x - 4z = -1 \end{matrix}\right. , y el plano  \fn_jvn \pi _{1}\equiv x - y + 3z = 12
a) Calcule la ecuación del plano \fn_jvn \large \pi _{2} que contiene a la recta \fn_jvn \large r y es perpendicular al plano \fn_jvn \large \pi _{1}.
b) Sabiendo que la recta \fn_jvn \large r corta el plano \fn_jvn \large \pi _{1} averigüe el punto de intersección.

Categorías
Convocatoria Extraordinaria Ejercicio Geometría Matemáticas II

Matemáticas II 2019 Julio A 3

3 Hallar la ecuación de la recta que verifica simultáneamente las siguientes condiciones:
– es paralela a los planos de ecuaciones: \fn_jvn \pi_{1}\equiv x - 3y + z = 0 y \fn_jvn \pi_{2}\equiv 2x - y + 3z = 5
– pasa por el punto P(2,-1,5).

Categorías
Convocatoria Extraordinaria Ejercicio Geometría Matemáticas II

Matemáticas II 2019 Julio B 3

3 Hallar el ángulo que forman el plano \fn_jvn \pi \equiv 2x - y + z = 0 y el plano que contiene a las
rectas:
\fn_jvn r \equiv \left\{\begin{matrix} x = 1-t\\ y = t\\ z = t \end{matrix}\right.\fn_jvn s \equiv \frac{x + 1}{-2} = \frac{y}{0} = z - 1 

Categorías
Convocatoria Ordinaria Ejercicio Geometría Matemáticas II

Matemáticas II 2019 Junio A 3

3 Dados los planos \pi_{1} \equiv x-y+3=0 y \pi_{2} \equiv 2x+y-z=0 , calcular:
a) La ecuación de la recta s paralela a los planos \pi_{1} y \pi_{2} que pasa por el punto B(2,2,3)
b) El ángulo que forman los planos  \pi_{1} y \pi_{2} 

Categorías
Convocatoria Ordinaria Ejercicio Geometría Matemáticas II

Matemáticas II 2019 Junio B 3

3 Se consideran los puntos A(2, -1, 1) y B(-2, 3, 1) que determinan la recta r 
a) Calcular la recta perpendicular a r que pasa por el punto P(-4, 17, 0)
b) Calcular la ecuación del plano respecto del cual los puntos A y B son simétricos. 

Ir al contenido