1 Sean las funciones: y .
a) Calcule los valores a, b y c de manera que las gráficas de f(x) y g(x) cumplan las dos
condiciones siguientes:
– Se cortan en el punto P(1, 1).
– En dicho punto coincida la pendiente de las rectas tangentes.
Dar las expresiones de las funciones resultantes.
b) Suponiendo a = b = 1 en f(x), halle las asíntotas de la función:
2 Una pequeña bombonería tiene en su almacén 24 kg de chocolate y 60 litros de leche, con los que elabora tres productos distintos: cajas de bombones, tabletas de chocolate y paquetes de chocolate en polvo. Del resto de los ingredientes se tienen reservas suficientes.
Se sabe que las cajas de bombones requieren 2 kg de chocolate y 6 litros de leche, las tabletas de chocolate requieren 4 kg de chocolate y 4 litros de leche, y cada paquete de chocolate en polvo requiere 1 kg de chocolate y 4 litros de leche. Se quiere fabricar un total de 12 unidades y con ello se consume todo el chocolate y toda la leche almacenados. ¿Cuántas unidades deben fabricarse de cada tipo de producto?.
3 Consideremos la recta , y el plano
a) Calcule la ecuación del plano que contiene a la recta y es perpendicular al plano .
b) Sabiendo que la recta corta el plano averigüe el punto de intersección.
4 Se sabe que el 8% de los análisis de comprobación del níquel en una aleación de acero son
erróneos. Se realizan 10 análisis.
a) Se afirma que la probabilidad de que 3 o más análisis sean erróneos es menor que el 3%. Justifique si es cierto.
b) Se afirma que la probabilidad de obtener exactamente 3 análisis erróneos es menor que el 3%. Justifique si es cierto.
c) Si se realizan 100 análisis, justifique si el número esperado de análisis correctos es igual a 8.