Categorías
Álgebra Convocatoria Extraordinaria Ejercicio Matemáticas II Opción A

Matemáticas II 2021 Julio A 2

2 Se consideran las matrices: \inline A = \begin{pmatrix} 1 & -1\\ 4 & 2 \end{pmatrix} ; \inline B = \begin{pmatrix} 1 & 0\\ 4 & -1 \end{pmatrix}

a) Sea la matriz \inline M = A + c. B, donde ? es un número real cualquiera. Calcular los valores de ? de forma que el rango (?) = 1.
b) Sea la matriz \inline D = A^{2} + B . A
Averiguar la matriz ? que cumple la siguiente ecuación matricial: \inline D . X = -30 \begin{pmatrix} 2 & 1 & 3\\ 0 & 1 & 4 \end{pmatrix}

 

Categorías
Álgebra Convocatoria Extraordinaria Ejercicio Matemáticas II Opción B

Matemáticas II 2021 Julio B 2

2 En la liga Mate-Basket, las mujeres matemáticas con mayor puntuación son: Lovelace, Noerther y Germain. Las tres acumulan 17500 puntos. Además, lo que ha anotado Germain más 2500 puntos es equivalente a la mitad de lo anotado por Lovelace. Finalmente, Noerther anotó el doble que Germain.
Escriba el ranking de puntuaciones de la liga Mate-Basket de las jugadoras Lovelace, Noerther y Germain.

Categorías
Álgebra Convocatoria Ordinaria Ejercicio Matemáticas II

Matemáticas II 2021 Junio A 2

2 Calcular el valor de la matriz \inline \fn_jvn M = X^{2} - Y^{2} , siendo ? e ? las matrices que son solución del siguiente sistema:
\fn_jvn \left\{\begin{matrix} 4X + 3Y = \begin{pmatrix} 1 & 8\\ -3 & -1 \end{pmatrix}\\ 2X + Y = \begin{pmatrix} 3 & 4\\ 1 & -1 \end{pmatrix} \end{matrix}\right.

Categorías
Álgebra Convocatoria Ordinaria Ejercicio Matemáticas II

Matemáticas II 2021 Junio B 2

2 Un granjero compra un determinado mes 274€ de pienso para su ganado. Con ese dinero ha comprado un total de 66 sacos de pienso de tres marcas diferentes: A, B y C. Se sabe que el precio de cada marca de pienso que ha comprado es de 5€, 4€ y 4€, respectivamente. También se sabe que el número de sacos adquiridos de la marca C es el doble que el total de sacos comprados de las marcas A y B juntos. Averiguar la cantidad de sacos que el granjero ha comprado de cada una de las tres marcas.

Categorías
Álgebra Convocatoria Ordinaria Ejercicio Matemáticas II

Matemáticas II 2020 Julio A 2

2 Dada la matriz \fn_jvn A = \begin{pmatrix} k & 0 & 1\\ 0 & k-1 & k-1\\ k & 1 & k-3 \end{pmatrix}
a) Halle los valores del parámetro k para los que la matriz A tiene inversa.
b) Tomando el valor k =-1 en la matriz A, calcule la matriz X que verifica que:
A X = 24· I3 , siendo I3 la matriz identidad de orden 3.

Categorías
Álgebra Convocatoria Ordinaria Ejercicio Matemáticas II

Matemáticas II 2020 Julio B 2

2 Una pequeña bombonería tiene en su almacén 24 kg de chocolate y 60 litros de leche, con los que elabora tres productos distintos: cajas de bombones, tabletas de chocolate y paquetes de chocolate en polvo. Del resto de los ingredientes se tienen reservas suficientes.
Se sabe que las cajas de bombones requieren 2 kg de chocolate y 6 litros de leche, las tabletas de chocolate requieren 4 kg de chocolate y 4 litros de leche, y cada paquete de chocolate en polvo requiere 1 kg de chocolate y 4 litros de leche. Se quiere fabricar un total de 12 unidades y con ello se consume todo el chocolate y toda la leche almacenados. ¿Cuántas unidades deben fabricarse de cada tipo de producto?.

Categorías
Álgebra Convocatoria Extraordinaria Ejercicio Matemáticas II

Matemáticas II 2019 Julio A 2

2 Dado el sistema:
\inline \fn_jvn \left.\begin{matrix} 2x + y + 3z = 2\\ 5x + 2y + 4z = -1\\ 3x + y + k^{2}z = 3k \end{matrix}\right\}
a) Discutirlo para los distintos valores del parámetro k 
b) Resolverlo para k =2

Categorías
Álgebra Convocatoria Extraordinaria Ejercicio Matemáticas II

Matemáticas II 2019 Julio B 2

2 Sea la matriz C = A • B, donde:

\fn_jvn A = \begin{pmatrix} 1 & 2 & m\\ 1 & -1 & -1 \end{pmatrix}  y \fn_jvn B = \begin{pmatrix} 1 & 2\\ m & 0\\ 0 & 2 \end{pmatrix}
a) Encontrar los valores de m para los que existe inversa de la matriz C
b) Calcular la matriz inversa de C en el caso de m =2.

Categorías
Álgebra Convocatoria Ordinaria Ejercicio Matemáticas II

Matemáticas II 2019 Junio A 2

2Dadas las matrices: A = \begin{pmatrix} x & 1\\ 1 & x+1 \end{pmatrix}B=\begin{pmatrix} 0 & 1\\ 1 & 1 \end{pmatrix} y sea I la matriz identidad de orden 2.
a) Calcular el valor de x de modo que se verifique la igualdad: B^{2} = A
b) Calcular el valor de x para que A-I_{2}=B^{-1}
c) Calcular el valor de x para que A.B = I_{2} 

Categorías
Álgebra Convocatoria Ordinaria Ejercicio Matemáticas II

Matemáticas II 2019 Junio B 2

2 Resolver el siguiente sistema de ecuaciones matriciales:

\left. 2X + 3Y = \begin{pmatrix} 8 & -3 & 4\\ 7 & -1 & 12 \end{pmatrix} \atop X - 2Y = \begin{pmatrix} -3 & 2 & 2\\ -7 & 3 & -1 \end{pmatrix} \right\}

Ir al contenido