Categorías
2019 Convocatoria Ordinaria Examen Matemáticas II Opción B

Matemáticas II 2019 Junio B

1 Dada la siguiente expresión de la función f, de la que se desconocen algunos valores: 

\fn_jvn \mathbf{f(x)= \left\{ \begin{array}{lcc} a-x & si & x \leq 1 \\ \\ \frac{b}{x}-ln(x) & si & x > 1 \\ \end{array} \right.}
Calcular los valores de a y b para que f sea derivable en todo su dominio.
Escribir la función resultante.

2 Resolver el siguiente sistema de ecuaciones matriciales:

\fn_jvn \left. 2X + 3Y = \begin{pmatrix} 8 & -3 & 4\\ 7 & -1 & 12 \end{pmatrix} \atop X - 2Y = \begin{pmatrix} -3 & 2 & 2\\ -7 & 3 & -1 \end{pmatrix} \right\}

3 Se consideran los puntos A(2, -1, 1) y B(-2, 3, 1) que determinan la recta r  
a) Calcular la recta perpendicular a r que pasa por el punto P(-4, 17, 0)
b) Calcular la ecuación del plano respecto del cual los puntos A y B son simétricos. 

4 Una planta ensambladora de circuitos recibe componentes procedentes de tres fabricantes A, B y C. El 50% del total de los componentes se compra al fabricante A, mientras que a los fabricantes B y C se le compra un 25% a cada uno. El porcentaje de componentes defectuosos es de un 5% para el fabricante A, el 10% para el fabricante B y el 12% para el fabricante C.
a) Construir el diagrama de árbol con las probabilidades asignadas.
b) El Departamento de Control de la Calidad escoge un circuito al azar en el almacén, hallar la probabilidad de que contenga componentes defectuosos.
c) Escogido al azar un circuito que no tiene componentes defectuosos, ¿qué porcentaje de dichos componentes han sido vendidos por el proveedor B?

Ir al contenido