Categorías
2021 Convocatoria Extraordinaria Examen Matemáticas II Opción A

Matemáticas II 2021 Julio A

1 Dada la función \inline f(x)=\left\{\begin{matrix} \frac{x^{2} + a}{2x - 4} & x \leq 0\\ 10x^{2} + x + b & x > 0 \end{matrix}\right.
Calcular los valores de los parámetros a y b para que la función ?(?) sea continua y derivable en . Dar las expresiones de la función ?(?) y de su derivada ?′(?).

2 Se consideran las matrices: \inline A = \begin{pmatrix} 1 & -1\\ 4 & 2 \end{pmatrix} ; \inline B = \begin{pmatrix} 1 & 0\\ 4 & -1 \end{pmatrix}

a) Sea la matriz \inline M = A + c. B, donde ? es un número real cualquiera. Calcular los valores de ? de forma que el rango (?) = 1.
b) Sea la matriz \inline D = A^{2} + B . A
Averiguar la matriz ? que cumple la siguiente ecuación matricial: \inline D . X = -30 \begin{pmatrix} 2 & 1 & 3\\ 0 & 1 & 4 \end{pmatrix}

3 Dadas las siguientes ecuaciones en el espacio tridimensional:

?: 5 − ? = ? − 3 = 5 − ?
π: 3x − 4y − 8z + 35 = 0

a) Comprobar que la recta ? y el plano π se cortan en un punto. Averiguar dicho punto.
b) Calcular la ecuación del plano que pasa por el punto ? (2, 2, 2), paralelo a la recta ?, y perpendicular al plano π.

4 Con el objetivo de llevar a cabo el proceso de control de calidad de las arandelas, estas se organizan en lotes de 20 arandelas. Si la probabilidad de que una arandela sea defectuosa es de 0.01 y las arandelas se pueden considerar independientes entre sí:
a) Determinar si la probabilidad de encontrar en un lote 1 o 2 arandelas defectuosas es mayor del 20%.
b) Si un lote se rechaza cuando se encuentra al menos una arandela defectuosa, ¿cuál es la probabilidad de rechazar el lote?.
c) ¿Cuál es el número esperado de arandelas sin defectos si el lote fuera de 200 arandelas?.

Categorías
2021 Convocatoria Extraordinaria Examen Matemáticas II Opción B

Matemáticas II 2021 Julio B

1 Dadas las funciones:  \inline f(x) = x^{2} - 4x ; \inline g(x) = 4 - 4x 
a) Esboce el gráfico del recinto limitado por las funciones f(x) y g(x).
b) Determinar el área del recinto limitado por las funciones f(x) y g(x).

2 En la liga Mate-Basket, las mujeres matemáticas con mayor puntuación son: Lovelace, Noerther y Germain. Las tres acumulan 17500 puntos. Además, lo que ha anotado Germain más 2500 puntos es equivalente a la mitad de lo anotado por Lovelace. Finalmente, Noerther anotó el doble que Germain.
Escriba el ranking de puntuaciones de la liga Mate-Basket de las jugadoras Lovelace, Noerther y Germain.

3 Dado el plano o ?:−? + 3? + 2? + 5 = 0 y las rectas secantes:
\inline r: \frac{x - 5}{2} = y + 2 = 1 - z    \inline s: \frac{x + 1}{6} = \frac{y}{-2} = z

a) Sea A el punto de intersección de las rectas ? y ?. Hallar la ecuación de la recta que es perpendicular al plano ? y que pasa por A.
b) Calcular el ángulo que forman las rectas ? y ?.

4 Suponiendo que el tiempo de espera en la cola de correos sigue una distribución normal de media 7’5 minutos con 2 minutos de desviación típica.
a) Hallar el porcentaje de personas que esperan más de 9 minutos.
b) Correos afirma que: “Menos del 40% de las personas que acuden a Correos esperan entre 7 y 10 minutos”. ¿Es correcta la afirmación?.

Categorías
2021 Convocatoria Ordinaria Examen Matemáticas II Opción A

Matemáticas II 2021 Junio A

1 Dada la función \fn_jvn f(x)=\frac{ax^{2}-2}{b-x} ,donde ? y ? son dos parámetros con valores reales.
a) Calcular el valor de los parámetros ? y ? que verifican ?(−2) = 2 y que ?(?) sea continua en ℝ − {5}. Escribir la función resultante ?(?) y calcular su derivada ?′(?).
b) Hallar las ecuaciones de las asíntotas de la función ?(?) si los parámetros toman los valores ? = −1 y ? = −3.

2 Calcular el valor de la matriz \inline \fn_jvn M = X^{2} - Y^{2} , siendo ? e ? las matrices que son solución del siguiente sistema:
\fn_jvn \left\{\begin{matrix} 4X + 3Y = \begin{pmatrix} 1 & 8\\ -3 & -1 \end{pmatrix}\\ 2X + Y = \begin{pmatrix} 3 & 4\\ 1 & -1 \end{pmatrix} \end{matrix}\right.

3 Dados los siguientes puntos en el espacio tridimensional:
?(0,−2,3), ? (1,−1,4), ? (2,3,3) y ?(4,5,5).
a) Comprobar que los cuatro puntos son coplanarios.
A continuación, calcular la ecuación del plano que los contiene.
b) Calcular la ecuación de la recta ?, perpendicular al plano ?:

\fn_jvn \pi \equiv \left\{\begin{matrix} x = 1 + \lambda + \mu \\ y = -2 - \lambda + 2\mu\\ z = 3 + 3\lambda - \mu \end{matrix}\right.
que pasa por el punto ?.

4 En un cierto instituto el 50% de su alumnado lleva el desayuno desde casa, el 40% lo compra en la cafetería del instituto, y el resto lo adquiere en un bazar cercano al instituto. Solamente un 5% de los desayunos que se llevan desde casa incluyen bebidas azucaradas, pero en los desayunos comprados en la cafetería este porcentaje es del 60% y en los desayunos comprados en el bazar del 80%.
a) Construir el árbol de probabilidades descrito en el enunciado.
b) Justificar si es cierto que más de un 30% de los desayunos del alumnado incluyen bebidas azucaradas.
c) Justificar si es cierto que, elegido un desayuno al azar, la probabilidad que un estudiante lo haya traído desde casa, sabiendo que el desayuno incluye una bebida azucarada, es mayor que 0,1.

Categorías
2021 Convocatoria Ordinaria Examen Matemáticas II Opción B

Matemáticas II 2021 Junio B

1 Se desea construir una caja sin tapa superior. Para ello, se usa una lámina de cartón de 15 cm de ancho por 24 cm de largo, doblándola convenientemente después de recortar un cuadrado de iguales dimensiones en cada una de sus esquinas. Se determina como requisito que la caja a construir contenga el mayor volumen posible. Indicar cuáles son las dimensiones de la caja y su volumen máximo.

 

2 Un granjero compra un determinado mes 274€ de pienso para su ganado. Con ese dinero ha comprado un total de 66 sacos de pienso de tres marcas diferentes: A, B y C. Se sabe que el precio de cada marca de pienso que ha comprado es de 5€, 4€ y 4€, respectivamente. También se sabe que el número de sacos adquiridos de la marca C es el doble que el total de sacos comprados de las marcas A y B juntos. Averiguar la cantidad de sacos que el granjero ha comprado de cada una de las tres marcas.

3 Dadas las ecuaciones de los planos:

\fn_jvn \pi _{1}\equiv 2x + 3y - z = 9  y  \fn_jvn \pi _{2}\equiv \left\{\begin{matrix} x = 1 + \lambda + \mu \\ y = -2 - \lambda + 2\mu \\ z = 3 + 3\lambda - \mu \end{matrix}\right.

a) Hallar la ecuación de la recta paralela a los planos ?1 y ?2 que pasa por el punto medio del segmento cuyos extremos son ?(1,−1,0) y ?(−1,−3,2)
b) Calcular el ángulo formado por los planos ?1 y ?2.

4 Se ha comprobado que, al aplicar un determinado medicamento, la probabilidad de que elimine el acné a un paciente es del 80 %. Suponiendo independencia de sucesos.
a) Si se lo toman 100 pacientes. ¿Cuál es la probabilidad de que el medicamento actúe con más de 75 pacientes?
b) Si se lo toman 225 pacientes. ¿Cuál es la probabilidad de que el medicamento actúe entre 170 y 190 pacientes?
c) ¿Cuál es el número esperado de pacientes sobre los que NO se eliminará el acné si se toman el medicamento 500 pacientes?

Ir al contenido