Categorías
2020 Convocatoria Ordinaria Examen Matemáticas II Opción A

Matemáticas II 2020 Julio A

1 Consideremos la función \fn_jvn f(x) = \frac{\ln (x)}{x^{2}} , donde ln denota el logaritmo neperiano. Resuelva justificadamente los siguientes apartados:
a) Presente el dominio, los intervalos de crecimiento y decrecimiento, así como los posibles extremos relativos de la función f(x).
b) Calcule el valor de la integral: \fn_jvn \int_{1}^{e}f(x)dx.

2 Dada la matriz \fn_jvn A = \begin{pmatrix} k & 0 & 1\\ 0 & k-1 & k-1\\ k & 1 & k-3 \end{pmatrix}
a) Halle los valores del parámetro k para los que la matriz A tiene inversa.
b) Tomando el valor k =-1 en la matriz A, calcule la matriz X que verifica que:
A X = 24· I3 , siendo I3 la matriz identidad de orden 3.

3 Dadas las rectas siguientes: \fn_jvn r\equiv \left\{\begin{matrix} x + y - z = 4\\ x + 2y = 7 \end{matrix}\right.  ,  \fn_jvn s\equiv \left\{\begin{matrix} x = 2\\ y + 5 = 0 \end{matrix}\right.
a) Estudie la posición relativa de r y s.
b) Halle la ecuación del plano perpendicular a la recta r, y que contiene el punto
A(11, –2, 5).

4 El tiempo que transcurre hasta la primera avería de una unidad de cierta marca de impresoras de chorro de tinta viene dado, aproximadamente, por una distribución normal con un promedio de 1500 horas y una desviación típica de 200 horas.
a) ¿Qué porcentaje de esas impresoras fallarán antes de 1000 horas de funcionamiento?
b) ¿Qué porcentaje de esas impresoras tendrán la primera avería entre las 1000 y 2000 horas de uso?

Categorías
2020 Convocatoria Ordinaria Examen Matemáticas II Opción B

Matemáticas II 2020 Julio B

1 Sean las funciones:  \fn_jvn f(x) = 2x^{2} + ax^{2} + b  y  \fn_jvn g(x) = -2x^{3} + c.
a) Calcule los valores a, b y c de manera que las gráficas de f(x) y g(x) cumplan las dos
condiciones siguientes:
Se cortan en el punto P(1, 1).
En dicho punto coincida la pendiente de las rectas tangentes.
Dar las expresiones de las funciones resultantes.
b) Suponiendo a = b = 1 en f(x), halle las asíntotas de la función:  \fn_jvn h(x) = \frac{f(x)}{x^{3}-1}

2 Una pequeña bombonería tiene en su almacén 24 kg de chocolate y 60 litros de leche, con los que elabora tres productos distintos: cajas de bombones, tabletas de chocolate y paquetes de chocolate en polvo. Del resto de los ingredientes se tienen reservas suficientes.
Se sabe que las cajas de bombones requieren 2 kg de chocolate y 6 litros de leche, las tabletas de chocolate requieren 4 kg de chocolate y 4 litros de leche, y cada paquete de chocolate en polvo requiere 1 kg de chocolate y 4 litros de leche. Se quiere fabricar un total de 12 unidades y con ello se consume todo el chocolate y toda la leche almacenados. ¿Cuántas unidades deben fabricarse de cada tipo de producto?.

3 Consideremos la recta \fn_jvn r:\left\{\begin{matrix} 2x - y = 5\\ 3x - 4z = -1 \end{matrix}\right. , y el plano  \fn_jvn \pi _{1}\equiv x - y + 3z = 12
a) Calcule la ecuación del plano \fn_jvn \large \pi _{2} que contiene a la recta \fn_jvn \large r y es perpendicular al plano \fn_jvn \large \pi _{1}.
b) Sabiendo que la recta \fn_jvn \large r corta el plano \fn_jvn \large \pi _{1} averigüe el punto de intersección.

4 Se sabe que el 8% de los análisis de comprobación del níquel en una aleación de acero son
erróneos. Se realizan 10 análisis.
a) Se afirma que la probabilidad de que 3 o más análisis sean erróneos es menor que el 3%. Justifique si es cierto.
b) Se afirma que la probabilidad de obtener exactamente 3 análisis erróneos es menor que el 3%. Justifique si es cierto.
c) Si se realizan 100 análisis, justifique si el número esperado de análisis correctos es igual a 8.

Ir al contenido